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Abstract: The construction of the Ward-like operator of the interacting string field theory presented by Witten,
in terms of the half-string (comma) oscillator modes, is completed.

1. Introduction

Witten’s cubic bosonic open string field the-
ory was formulated in [1] and made more pre-
cise in terms of full string oscillators in [2,3]. In
[1], Witten suggested that the full string (FS)
may be split into two halves leading to the half-
string (comma) approach formulated in [4]. In
[5] a precise formulation in terms of half-string
oscillators was given. Further development of the
comma theory was carried out in [7]. In 2001, the
work of references [8—11] generated much interest
in the comma formulation of Witten’s theory of
interacting open bosonic strings. Subsequently,
interest in the comma theory faded a way and
many of the issues in the comma approach raised
in [6,7] remain unsolved. In [14], Ward-like (WL)
identities were established and used as part of the
proof of the equivalence between the bosonic and
fermionic ghost realizations of the gauge invari-
ance in Witten’s theory. Although K invariance
was established in [6], theWL identities were not
discussed in the case of the comma theory. Just
as in the case of the full string, the proof of equiv-
alence in the comma theory requires that similar
WL identities hold in the comma theory. The im-
portance of the proof resides in the fact that the
physical content of the theory depends on WL
identities. One of the reasons that this problem
received little attention has to do with the dif-
ficulty of constructing the WL operator in the
comma approach as we shall see shortly. Once
we construct the WL operator, we can complete
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the proof of equivalence of the comma three-point
vertex (coordinate and ghost), and establish the
BRST invariance of the full three-point vertex
in the bosonized ghost[15], a problem that was
briefly discussed in [6].

2. Comma formalism

Here we shall review the comma formalism
needed to describe the WL operator in terns of
the half-string oscillator modes. The comma for-
malism was developed in [5]. Here we briefly
consider the bosonic ghost field φ (σ); the mat-
ter fields xµ (σ), µ = 0, 1, 2, ..., 25, have similar
structure and have been considered in [5].

2.1. Full string ghost field

The bosonized ghost field φ (σ) for the full
string has the mode expansion

φ (σ) = φ0 +
√

2

∞∑
n=1

φn cosnσ (1)

where 0 ≤ σ ≤ π. In (1) the modes φn are related
to creation and annihilation operators through

φn =
i√
2n

(
aφn − a

φ
−n

)
(2)

pφn = −i ∂

∂φn
=

√
n

2

(
aφn + aφ−n

)
(3)

for n > 0 (with aφ−n ≡ aφn ) and

φ0 =
i

2

(
aφ0 − a

φ†
0

)
(4)

pφ0 = −i ∂

∂φ0
=
(
aφ0 + aφ†0

)
(5)
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2.2. Comma ghost field

  Here we review the transformation needed to 
express the full string ghost field in terms of 
ghost fields living on the left and right halves of 
the string. Following ref. [5], we break up the

full string ghost coordinate φ (σ) satisfying Neu-
mann boundary conditions at the end points of
the string (σ = 0, π) into its left and right halves,
according to

ϕ(L) (σ) = φ(σ)− φ(
π

2
), 0 ≤ σ ≤ π

2
(6)

ϕ(R) (σ) = φ(π − σ)− φ(
π

2
), 0 ≤ σ ≤ π

2
(7)

where now the comma ghost fields ϕ(L) (σ),
ϕ(R) (σ) obeys Neumann boundary condition at
σ = 0 and Dirichlet boundary condition at σ =
π/2. The mode expansion of the left and right
pieces have been considered in [5]

ϕ(r) (σ) =
√

2

∞∑
n=1

ϕ(r)n cos (2n− 1)σ (8)

where r = 1, 2 = L,R. The modes ϕ(r)n in (8) are
related to the comma creation and annihilation
operators through

ϕ(r)n =
i√

2n− 1

(
bϕ(r)n − bϕ(r)−n

)
(9)

pϕ(r)n = −i ∂

∂ϕ
(r)
n

=

√
2n− 1

2

(
bϕ(r)n + b

ϕ(r)
−n

)
(10)

for n > 0 (with b(r)−n ≡ b
(r)†
n ). The degrees cor-

responding to the midpoint ghost coordinate and
and its conjugate momenta are given by

ϕM ≡ φ (π/2)

= φ0 +

√
2

π

∞∑
n=1

(−1)
n

2n− 1

(
ϕ(1)n + ϕ(2)n

)
(11)

and

ÞϕM = −i ∂

∂φ (π/2)
= pφ0 (12),

respectively.
The operators b′s are related to the usual

comma operators β′s (corresponds in the full
string to α′s) through

b(r)n =
β
ϕ(r)
2n−1√

2n− 1
, bs−n =

β
ϕ(r)†
2n−1√

2n− 1
(13)

The full string ghost operators αφn are related to
the comma ghost operators βϕn through [7].

αφ2n =

∞∑
m=1

M2n 2m−1β
ϕ(+)
2m−1 + (−1)

n ÞϕM ,

(14)

αφ2n−1 = β
ϕ(+)
2n−1 (15),

for n > 0, and

αφ0 = pφ0 = ÞϕM (16)

for n = 0. The operators β(±)n are defined by

β(±)n =
1√
2

(
β(1)n ± β(2)n

)
(17)

and the change of representation matrix, M , has
the form

Mnm =
n

m

(−1)
(n+m+1)/2

n−m (18)

2.3. The three vertex in the comma theory
In the comma approach to string theory, the

elements of the theory are defined by δ−function
type overlaps

V
(χ+ϕ)HS
3 = expi

∑3
j=1Q

(φ)
j φ(π/2) V

(ϕ)HS
3,0 V

(χ)HS
3,0

(19)

where

V
(ϕ)HS
3,0 =

3∏
j=1

π/2∏
σ=0

δ
[
ϕ
(L)
j (σ)− ϕ(R)j−1 (σ)

]
(20)

and V (χ)HS3,0 refers to the matter part of the ver-
tex [7]. It is to be understood that j− 1 = 0 ≡ 3.
The factor Q(φ)j is the ghost number insertion
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at the mid-point which is needed for the BRST
invariance of the theory [2,5] and in this case
Q
(φ)
1 = Q

(φ)
2 = Q

(φ)
3 = 1/2. As we have seen

before [2,5], in the Hilbert space of the theory,
the δ − functions overlaps translate into opera-
tor overlap equations which determine the precise
form of the vertex. The ghost part of the comma
vertex has the same structure as the coordinate
one apart from the mid-point insertions

|V3〉χ+ϕHS = e
3
2 iφMV

(ϕ)HS
3,0 V

(χ)HS
3,0

∣∣∣∣0, Ng =
3

2

〉χ+ϕ
HS

(21)

where

ϕM ≡ φ1
(π

2

)
= φ2

(π
2

)
= φ3

(π
2

)
(22)

and∣∣∣∣0, Ng =
3

2

〉χ+ϕ
HS

= |0〉χL |0〉
χ
R×

∣∣∣∣0, Ng =
3

2

〉ϕ
L

∣∣∣∣0, Ng =
3

2

〉 ϕ

R

(23)

In the above expression, |0〉123 = |0〉1 |0〉2 |0〉3 and
V HS3,0 is the exponential of a quadratic form in the
creation operators

V HS3,0 = exp

[
1

2

β†r in√
n
Hij;ss′

nm

β†s jm√
m

]
(24)

The matrix elements Hij;ss′

nm have the simple form

Hrs; ij
nm = 2δnmδ

rRδSLδi j−1 (25)

with i − 1 = 0 ≡ 3 and the half string operators
β′s satisfy the usual commutation relations[
βr in , β†s jm

]
= nδrsδijδn,m, n,m (26)odd

It is the simplicity of the coupling matrix, H, that
makes the comma theory appealing (Compare H
to N in ref. [2]).

3. WL operator in the FS basis

We recall that in ref. [2,3] the bosonic and
fermionic realizations of the full string ghost fields
have been used to express the ghost part of the
string field but no attention was paid to their
equivalence. In ref. [2], the authors showed that
both ways give rise to a gauge invariant theory
for Witten’s open bosonic string. However, their
equivalence was never established there and the
proof of equivalence of the two formulations of
the ghost part was subsequently established in
ref. [14]. In ref. [14] it was established that op-
erator vertices obey the same equations and are
identical. The key to the proof lies in the var-
ious identities satisfied by the Neumann coeffi -
cients in the definition of the three point vertex.
In the proof of equivalence the authors needed
to establish K-invariance and WL identities (L-
equations) which are necessary but not suffi cient
for gauge invariance which hods only in D = 26.
They also proved BRST -invariance and showed
that BRST -invariance implies both K-invariance
and the WL identities. In [6], the K-invariance
of the comma theory was established and the
BRST -invariance was briefly discussed, but the
WL identities were not addressed. Before dis-
cussing the WL identities and BRST -invariance
in the comma theory one needs, first, to construct
the WL operator in the comma theory. Before
we construct theWL operator in the comma the-
ory, let us briefly review the WL identities in the
full string oscillator formalism of the open bosonic
string.
In the bosonic representation of the ghost, the

WL identities for the Witten vertex matter plus
ghost [14] are given by

W x+φ,i
m ||V x+φ3 >= 0, m = 1, 2, ...; i = 1, 2, 3

(27)

where, W x+φ
m , a Ward-like operator, is defined by

W x+φ,i
m = Lx+φ,im +

3∑
j=1

∞∑
n=0

mÑ ijLx+φ,j−n (28)

The full Virasoro generators, Lx+φm consist of Lxm
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+Lφm , where the ghost Virasoro generators are

Lφm =

∞∑
n=1

αφ†n α
φ
n+m +

1

2

m−1∑
n=1

αφm−nα
φ
n + pφ0α

φ
m

−3

2
mαφm, m > 0 (29)

and

Lφ0 =

∞∑
n=1

αφ†n α
φ
n +

1

2

(
pφ0

)2
− 1

8
(30)

Notice that Lφm differs from the coordinate piece
Lxm only in the extra term, linear in αφm, aris-
ing because of the extra term in the energy-
momentum tensor of φ(σ)

T± =
1

2π

[
(∂±φ)

2 − 3

2
∂2±φ

]
(31)

It is this extra term that gives rise to WL iden-
tities in 26 dimensions. With this extra term the
Virasoro generators for the ghost satisfy[
Lφn, L

φ
m

]
= (n−m)Lφn+m − (n−m) δn+m (32)

The constant term in the commutator
[
Lφn, L

φ
m

]
is

missing from the commutator for the matter part
[Lxn, L

x
m]. Likewise the zero mode Lφ0 differs from

the matter part Lx0 in the constant −1/8. This
extra term is needed since the vacuum ghost num-
ber has the value pφ = 1/2 and therefore Lφ0 = 0
as desired.

3.1. WL identities in the comma basis

In the bosonization of the fermionic coordinates
for the comma string, using the standard proce-
dure (see Ref. 1 in [3]), it is not obvious that
all ingredients of the comma theory employing
the comma bosonic fields ϕL (σ) and ϕR (σ) are
equivalent to those constructed using the origi-
nal comma fermi fields cL (σ), cR (σ), bL (σ) and
bR (σ) appearing in [5]. It has been claimed in
[6], that the ghost bosonic vertices in the comma
operator formulation obey the same overlap equa-
tions as the fermionic vertices and are identical.
However a rigorous proof was not presented in [5].

The authors failed to establish that the comma
ghost (plus matter) vertex in the bosonic realiza-
tion of the ghosts satisfy the same WL identities
obeyed by the comma ghost (plus matter) ver-
tex in the fermionic realization of the ghosts. To
complete the proof of equivalence between the two
realization of the comma ghost vertex, we need to
establish the WL identities utilizing the bosonic
representation of the comma ghost fields as well.
But to do that one first needs the explicit form of
theWL operator in the comma formalism. Find-
ing the explicit form of the WL operator in the
comma formalism will be the subject of this pa-
per. In a sequel to this paper we will prove that
WL identities do indeed hold in the comma the-
ory of the open bosonic string and use them to
establish K-invariance [15]. However, as it is the
case in the full string, a direct proof of the BRST -
invariance that follow from the WL identities is
not possible due to the presence of the (1/2)Lφ,i

term in the BRST charge. In [15], we will see
that the WL identities and the K-invariance are
necessary but not suffi cient conditions for gauge
invariance. On the other hand we will see that
BRST -invariance implies both theWL identities
and the K-invariance [15].
To prove the equivalence between the two ghost

realizations in the comma theory we need to show
that a similar identity to the one in (27) holds in
the comma basis, that is, we need to show that[
Wχ+ϕ,i
m (L) +Wχ+ϕ,i

m (R)
]
| (V3)χ+ϕHS >= 0 (33)

holds for m ≥ 0 and i = 1, 2, 3. The operators
W (L) and W (R) refer to the left and right parts
of the WL operators, respectively, and are given
by

Wχ(ϕ),i
m (L) = `(L)χ(ϕ),im +

3∑
j=1

∞∑
n=0

mÑ ij
mn`

(L)χ(ϕ),j
−n

(34)

and

Wχ(ϕ),i
m (R) = `(R)χ(ϕ),im +

3∑
j=1

∞∑
n=0

mÑ ij
mn`

(R)χ(ϕ),j
−n ,

(35)
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for m ≥ 0, respectively. The operators `(L)−n and

`
(R)
−n are the comma Virasoro generators corre-
sponding to the left and right parts of the string.
One way to obtain the comma ghost Virasoro gen-
erators is to start with the full string Virasoro
generators defined as

Lm =
1

4π

∫ π

−π
dσeimσ

[
·
φ (σ, τ) + φ′ (σ, τ)

]2∣∣∣∣∣
τ=0

(36)

To use the change of representation from the full
string to the comma string in (6) and (7), we need
to reduce the range of integration to σ ∈ [0, π/2].
Thus

Lm =
1

4π

∫ π/2

0

dσ

[
eimσ

(
·
φ (σ) + φ (σ)

′
)2

+e−imσ
(
·
φ (σ)− φ′ (σ)

)2]

+
(−1)

m

4π

∫ π/2

0

dσ

[
eimσ

(
·
φ (π − σ) + φ (π − σ)

′
)2

+e−imσ
(
·
φ (π − σ)− φ′ (π − σ)

)2]
(37)

Consistency with the definition of the comma
string in (6) and (7), requires that we identify
left comma Virasoro generators by

`(L)m =
1

4π

∫ π/2

0

[
eimσ

(
·
φ (σ) + φ (σ)

′
)2

+e−imσ
(
·
φ (σ)− φ′ (σ)

)2]
dσ (38)

and identify right comma Virasoro generators by

`(R)m =
(−1)

m

4π

∫ π/2

0

[
eimσ

(
·
φ (π − σ) + φ (π − σ)

′
)2

+e−imσ
(
·
φ (π − σ)− φ′ (π − σ)

)2]
dσ (39)

The full Virasoro generators do not factorize com-
pletely into left and right parts. This is be-
cause of the midpoint in the definition of the
comma ghost coordinates in (6) and (7) since
ϕ(L) (π/2) = ϕ(R) (π/2) = 0. One can avoid this
problem by execluding the midpoint φ (π/2) from
the definition of the half-string ghost coordinates
in (6) and (7). If one excludes the midpoint from
the definition of the half string ghost coordinates
the Virasoro generators will separate into left
and right Virasoro generators with the constraint
limσ→π/2 ϕ

(L) (σ) = limσ→π/2 ϕ
(R) (σ). However,

we need not worry about that here. Thus using
the definitions in (38) and (39), equation (37) can
be written in the form

Lim = `(L),im + `(R),im (40)

Henceforth, when the Virasoro generators are ex-
pressed in terms of the full string modes we shall
write Lm and when they are expressed in terms of
the comma modes we shall write `m = `

(L)
m +`

(R)
m .

The full string vacuum is related to the comma
vacua through the relation

||0〉 = exp

(
−1

2

β
(+)†
2n−1√

2n− 1
Φmn

β
(+)†
2m−1√

2m− 1

)
|0〉L |0〉R

(41)

where |0〉L(R) correspond to the comma left

(right) vacuum. The operators β(+)′s are defined
by

β
(+)
2n−1 =

1√
2

(
β
(L)
2n−1 + β

(R)
2n−1

)
(42)

and the matrix Φ has been defined in reference
[5]

Φmn =

√
2m− 1

√
2n− 1

2 (m+ n− 1)

(
− 12
m− 1

)(
− 12
n− 1

)
(43)

3.2. The comma WL operator
To construct the commaWL operator, we first

need to derive the Virasoro generators in the
comma formalism of string theory. The matter
part has been constructed in [5]; hence here we
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erators.

  When quantizing a theory one has to deal with 
normal ordering ambiguities. In the full string
theory the vacuum state ||0 > is related to the left 
and right vacuum states |0 >Land |0 >R through
(41). In the full string formalism [5] one is in- 
terested in normal ordering with respect to the 
full string vacuum (41) but in the comma the- 
ory formulated in [4], the relevant normal order- 
ing would be with respect to the comma left and 
right vacuum states |0 >Land |0 >R. However,
the two criteria are linked through the change of 
representation relationships.

  When ordering operators, we need to regularize 
the divergent quantities resulting from normal or- 
dering. One way of doing that is based on the so 
called "heat kernel regularization," in which one

replaces the operators α′ns and β
′
ns by

αεn = e−[n+12 ]εαn, ε > 0 (44)

βεn = e
−[n+12 ]ε
n βn, ε > 0 (45)

so that a given operator in any of the representa-
tions can be obtained by a limiting procedure for
infinitesimally small ε. Thus for a given operator
O we write

O (αn) = lim
ε→0

O (αεn)

= lim
ε−→0

O
(
e−[n+12 ]εαn

)
(46)

for the full string oscillators and

O
(
β(r)n

)
= lim
ε→0

O
(
β(r)εn

)
= lim
ε−→0

O

(
e
−[n+12 ]ε
n β(r)n

)
(47)

for the comma oscillators (r = L,R). Using this
prescription it is now possible to find the rela-
tionship between the two normal orderings. For
example,

:: αεnα
ε
m ::=: αεnα

ε
m : +

1 + (−1)
n

2

×1 + (−1)
m

2
[Knm − δN+m,0θ (m)] (48)

where in the above identity :: :: and :: indicate
normal ordering with respect to the full string
and comma vacuum states, respectively.
To first order in ε, the quantity Knm reads [5],

Knm = −1

2

nm

n+m

{
1

n

[
ψ

(
1

2

)
− ψ

(
1 + |n|

2

)]

+
1

m

[
ψ

(
1

2

)
− ψ

(
1 + |m|

2

)]
ε

[
ψ

(
1 + |n|

2

)
− ψ

(
1 + |m|

2

)]}
(49)

where ψ (x) is the digamma function.
Although now we can express `m in the comma

basis using the definitions in (38) and (39); it
is much easier to obtain `m with the aid of the
change of representations relations between the
full string and the comma string and then tak-
ing care of any ambiguities that can arise from
normal ordering of α′s and β′s operators2

`m
(
βq
)

= `(L)m

(
β(±)q

)
+ `(R)m

(
β(±)q

)
≡

Lm

αq =


Mq q′β

(+)
q′ + (−1)

q/2
℘M

for q = even, q′ = odd
αq = β(−)q for q = odd

 (50)

where β(+) has been introduced before and β(−)

is defined by

β
(−)
2n−1 =

1√
2

(
β
(L)
2n−1 − β

(R)
2n−1

)
(51)

For `2k−1, skipping tedious but reasonable
amount of algebra, equations (50) and (29) yield

:: `
(L)ϕ,i
2k−1 + `

(R)ϕ,i
2k−1 ::=:: `ϕ,i2k−1 ::= lim

ε→0+
:: `εϕ,i2k−1 ::

= lim
ε→0

∑
q=even

β
ε(−),i
2k−1−q

 ∑
q′=odd

Mq q′β
ε(+),i
q′

+ (−1)
n/2

℘φ,iM

]
− 3

2
(2k − 1)β

ε(−),i
2k−1 (52)

2We have checked that both ways give precisely the same
form. We chose to follow the second path here simply to
save space since the second option is much shorter.
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where

β(±)εq = e−|
q+1
2 |εβ(±)q (53)

The `ϕ2k−1 for the ghost part differs from the `
χ
2k−1

for the coordinate part only in the extra terms
linear in βε(+)2k−1. Simplifying the above expression,
we get

:: `
(L)ϕ,i
2k−1 + `

(R)ϕ,i
2k−1 ::=:: `

(ε)ϕ,i
2k−1 ::

= ℘φ.iM
∑
q even

(−1)
q/2

e|
2k−q
2 |εβ(−)ϕ,i2k−1−q

+
∑

q=even

∑
q′=odd

Gεk (q, q′)β
(−)ϕ,i
2k−1−q β

(+)ϕ,i
q′

−3

2
(2k − 1) e−|k|εβ

(−)ϕ,i
2k−1 , k > 0 (54)

where Gεk (n, q), a function of the parameter ε , is
defined by

Gεk (q, q′) = e−|
2k−q
2 |εMq q′e

−|(q′+1)/2|ε (55)

with q even integer and q′ odd integer. For m =
even = 2k > 0,

:: `
(L)ϕ,i
2k +`

(R)ϕ,i
2k ::=:: `ϕ,i2k ::= lim

ε→0
:: `

(ε)ϕ,i
2k :: (56)

From the above expression and equations (50)
and (29), we obtain the even comma Virasoro
generators (execluding m = 0)

:: `
(L)ϕ,i
2k +`

(R)ϕ,i
2k ::=:: `

(ε)ϕ,i
2k ::=

1

2

∞∑
q odd

e−|
2k−q−1

2 |ε

×e−|
q+1
2 |ε

[
β
(−)ϕ,i
2k−q β

(−)ϕ,i
q + (−1)

k
β
(+)ϕ,i
2k−q β

(+)ϕ,i
q

]
+ (−1)

k

{[
Þiφ −

3

2
(2k)

]2
Hε
k + 2

[
Þiφ −

3

2
(2k)

]

∞∑
q odd

Gεk (q)β(+)ϕ,iq +

∞∑
q,q′ odd

F εk (q, q′)β(+)ϕ,iq β
(+)ϕ,i
q′


(57)

where the quantities, H, G, and F , are given by

Hε
k =

∞∑
q′′ even

e
−
∣∣∣ 2k−q′′2

∣∣∣ε
e
−
∣∣∣ q′′2 ∣∣∣ε (58)

Gεk (q) =

∞∑
q′′ even

e−|
q
2 |εe−

∣∣∣ q′′2 ∣∣∣εGεk (q, q′′) (59)

F εk (q, q′) = (−1)
k 2

π

(−1)
q+1
2

q
Gεk (q′)

+
1

2

∞∑
q′′ even

[
1− e

∣∣∣ q′′2 ∣∣∣εe−
∣∣∣ 2k−q′′2

∣∣∣ε]

× (−1)
k

2k − q′′G
ε
k (q′′, q)Gεk (2k − q′′, q′) (60)

The comma Virasoro generators obtain by taking
the limit in ε. To first order in ε one obtains

:: `
(L)ϕ,i
2k + `

(R)ϕ,i
2k ::=:: `ϕ,i2k ::= lim

ε→0
:: `

(ε)ϕ,i
2k ::

=
1

2

∞∑
q odd

[
β
(−)ϕ,i
2k−q β

(−)ϕ,i
q + (−1)

k
β
(+)ϕ,i
2k−q β

(+)ϕ,i
q

]
+

lim
ε→0

(−1)
k

2ε

{[
Þi − 3

2
(2k)

]2
+ 2

[
Þi − 3

2
(2k)

]
2

π

∞∑
q odd

(−1)
q+1
2

q
e−|

q+1
2 |εβ(+)ϕ,iq +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q

(−1)
q′+1
2

q′
e−|

q+1
2 |εe−

∣∣∣ q′+12

∣∣∣ε
β(+)ϕ,iq β

(+)ϕ,i
q′

 (61)

Likewise for `ϕ,i0 one obtains

:: `
(L)ϕ,i
0 + `

(R)ϕ,i
0 ::=:: `ϕ,i0 ::

=
1

2

∞∑
q odd

[
β
(−)ϕ,i
−q β(−)ϕ,iq + β

(+)ϕ,i
−q β(+)ϕ,iq

]
− 1

8

+ lim
ε→0

1

2ε

(Þiφ)2 − 1 + 2Þiφ
2

π

∞∑
q odd

(−1)
q+1
2

q

×e−|
q+1
2 |εβ(+)ϕ,iq +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q

× (−1)
q′+1
2

q′
e−|

q+1
2 |εe−

∣∣∣ q′+12

∣∣∣ε
β(+)ϕ,iq β

(+)ϕ,i
q′

 (62)
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The extra term in (61), linear in β(+), arises be-
cause of the presence of the Rφ term in the action
of the bosonized ghosts [1]

Iφ =
1

2π

∫
d2σ

(
∂λφ∂

λφ− 3iRφ
)

(63)

or alternatively because of the extra linear term
in the ghost energy-momentum tensor (31). The
extra term is needed and must have precisely the
coeffi cient given in (31), so that φ (ghost coor-
dinate) can cancel the Virasoro anomaly of the
xµ (matter coordinates) so that the total (mat-
ter plus ghost) Fourier components of the energy
momentum

`(ε)sm = `(ε)χ,sm + `(ε)ϕ,sm − 9

8
δm0 (64)

obey the Virasoro algebra

[`ε,sm , `ε,sn ] = (m− n) `ε,rm+n (65)

which is free of central charge.
Utilizing the relationship between the two nor-

mal orderings, we can easily deduce the rela-
tionship between the Virasoro generators in both
cases

:: `
(ε)χ,ϕ
2k−1 ::=: `

(ε)χ+ϕ
2k−1 : − 1

4ε

(
1

ε
+ log

ε

2
+ 1

)
(66)

where we have kept only divergent terms of order
ε.
Now we are in position to write down the ex-

plicit form of the WL operator in the comma ba-
sis. We recall that

::Wχ+ϕ,i
m (L) +Wχ+ϕ,i

m (R) ::=:: Wχ+ϕ,i
m ::

=:: `(L)χ+ϕ,im + `(R)χ+ϕ,im :: +

3∑
j=1

∞∑
n=0

mÑ ij
mn :: `

(L)χ+ϕ,j
−n + `

(R)χ+ϕ,j
−n :: (67)

with `−n ≡ `†n.
Let us here focus on the ghost part since the

coordinate part will have the same structure with
the absence of terms linear in the comma creation

and annihilation operators. For m = odd = 2k −
1 > 0, equation (67) gives

::Wϕ,i
2k−1 (L) +Wϕ,i

2k−1 (R) ::=:: Wϕ,i
2k−1 ::

::=:: `
(L)ϕ,i
2k−1 + `

(R)ϕ,i
2k−1 :: +

3∑
j=1

∞∑
n=0

(2k − 1)

×Ñ ij
2k−1 n :: `

(L)ϕ,j
−n + `

(R)ϕ,j
−n :: (68)

Substituting (54), (61) and (62) into the above
expression, after a lengthy algebra, we obtain

::Wϕ,i
2k−1 (L) +Wϕ,i

2k−1 (R) ::=:: Wϕ,i
2k−1 ::

= ℘φ,jM
∑
q even

(−1)
q
2 e|

2k−q
2 |εβ(−)ϕ,j2k−1−q

+
∑

q=even

∑
q′=odd

Gεk (q, q′)β
(−)ϕ,j
2k−1−q β

(+)ϕ,j
q′

−3

2
(2k − 1) e−|k|εβ

(−)ϕ,j
2k−1 +

3∑
j=1

(2k − 1) Ñ ij
2k−1 0

×

1

2

∞∑
q odd

[
β(−)ϕ,jq β

(−)ϕ,j
−q + β(+)ϕ,jq β

(+)ϕ,j
−q

]
− 1

8

+ lim
ε→0

1

2ε

(Þjφ)2 − 1 + 2Þjφ
2

π

∞∑
q odd

(−1)
q+1
2

q

×e−|
q+1
2 |εβ(+)ϕ,j−q +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q∣∣∣∣∣∣× (−1)
q′+1
2

q′
e−|

q+1
2 |εe−|(q

′+1)/2|εβ(+)ϕ,j−q′ β
(+)ϕ,j
−q


+

3∑
j=1

∞∑
n=1

(2k − 1) Ñ ij
2k−1 2n

1

2

∞∑
q odd

e−|
2n−q−1

2 |ε×

e−|
q+1
2 |ε

[
β
(−)ϕ,j
−q β

(−)ϕ,j
−(2n−q) + (−1)

n
β
(+)ϕ,j
−q β

(+)ϕ,j
−(2n−q)

]
+ (−1)

k

[(
Þjφ −

3

2
(2n)

)2
Hε
n + 2×

(
Þjφ −

3

2
(2n)

) ∞∑
q odd

Gεn (q)β
(+)ϕ,j
−q
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+

∞∑
q,q′ odd

F εn (q, q′)β
(+)ϕ,j
−q′ β

(+)ϕ,j
−q


+

3∑
j=1

∞∑
n=1

(2k − 1) Ñ ij
2k−1 2n−1

{
℘φ,jM

∑
q even

(−1)

q/2e|(2n−q)/2|εβ
(−)ϕ,j
−(2n−1−q)+

∑
q=even

∑
q′=odd

Gεn (q, q′)

β
(+)ϕ,j
−q′ β

(−)ϕ,j
−(2n−1−q) −

3

2
(2n− 1) e−|n|εβ

(−)ϕ,j
−(2n−1)

}
(69)

Likewise for m = even = 2k > 0, equation (67)
yields

::Wϕ,i
2k (L) +Wϕ,i

2k (R) ::=:: Wϕ,i
2k ::=:: `

(L)ϕ,i
2k

+`
(R)ϕ,i
2k :: +

3∑
j=1

∞∑
n=0

2kÑ ij
2k n :: `

(L)ϕ,j
−n + `

(R)ϕ,j
−n ::

(70)

Substituting equations (54), (61) and (62) into
the above expression, after a lengthy algebra, we
get

::Wϕ,i
2k (L) +Wϕ,i

2k (R) ::=:: Wϕ,i
2k ::

=
1

2

∞∑
q odd

[
β
(−)ϕ,i
2k−q β

(−)ϕ,i
q + (−1)

k
β
(+)ϕ,i
2k−q β

(+)ϕ,i
q

]

+ (−1)
k

lim
ε→0

1

2ε

([
Þi − 3

2
(2k)

]2
+ 2

[
Þi − 3

2
(2k)

]

× 2

π

∞∑
q odd

(−1)
q+1
2

q
e−|

q+1
2 |εβ(+)ϕ,iq +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q

(−1)
q′+1
2

q′
e−|

q+1
2 |εe−

∣∣∣ q′+12

∣∣∣ε
β(+)ϕ,iq β

(+)ϕ,i
q′



+

3∑
j=1

2kÑ ij
2k0

1

2

∞∑
q odd

[
β
(−)ϕ,j
−q β(−)ϕ,jq

+β
(+)ϕ,j
−q β(+)ϕ,jq

]
− 1

8
+ lim
ε→0

1

2ε(Þjφ)2 − 1 + 2Þjφ
2

π

∞∑
q odd

(−1)
q+1
2

q

×e−|
q+1
2 |εβ(+)ϕ,j−q +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q
×

(−1)
q′+1
2

q′
e−|(

q+1
2 )|εe−

∣∣∣ q′+12

∣∣∣ε
β
(+)ϕ,j
−q′ β

(+)ϕ,j
−q


+

3∑
j=1

∞∑
n=1

2kÑ ij
2k 2n

1

2

∞∑
q odd

e−|
2n−q−1

2 |εe−|
q+1
2 |ε

×
[
β
(−)ϕ,j
−q β

(−)ϕ,j
−(2n−q) + (−1)

n
β
(+)ϕ,j
−q β

(+)ϕ,j
−(2n−q)

]
+ (−1)

k

[(
Þjφ −

3

2
(2n)

)2
Hε
n + 2

(
Þjφ −

3

2
(2n)

)
×

∞∑
q odd

Gεn (q)β
(+)ϕ,j
−q +

∞∑
q,q′ odd

F εn (q, q′)β
(+)ϕ,j
−q′ β

(+)ϕ,j
−q


+

3∑
j=1

∞∑
n=1

2kÑ ij
2k (2n−1)

{
℘φ,jM

∑
q even

(−1)
q
2 e|

2n−q
2 |ε

×β(−)ϕ,j−(2n−1−q) +
∑

q=even

∑
q′=odd

Gεn (q, q′)β
(+)ϕ,j
−q′

β
(−)ϕ,j
−(2n−1−q) −

3

2
(2n− 1) e−|n|εβ

(−)ϕ,j
−(2n−1)

}
(71)

And last for m = 0, equation (67) yields

::Wϕ,i
0 (L) +Wϕ,i

0 (R) ::

=::Wχ+ϕ,i
0 :=:: `

(L)ϕ,i
0 + `

(R)ϕ,i
0 ::

=
1

2

∞∑
q odd

[
β
(−)ϕ,i
−q β(−)ϕ,iq + β

(+)ϕ,i
−q β(+)ϕ,iq

]
− 1

8

+ lim
ε→0

1

2ε

(Þiφ)2 − 1 + 2Þiφ
2

π

∞∑
q odd

(−1)
q+1
2

q
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×e−|
q+1
2 |εβ(+)ϕ,iq +

(
2

π

)2 ∞∑
q,q′ odd

(−1)
q+1
2

q
×

(−1)
q′+1
2

q′
e−|

q+1
2 |εe−

∣∣∣ q′+12

∣∣∣ε
β(+)ϕ,iq β

(+)ϕ,i
q′

 (72)

The corresponding coordinates parts of the WL
operator are given by the same expressions with
the terms linear in β′s deleted.

4. Conclusions

We have seen in [5] that the comma vertex can
be expressed in terms of bose or fermi fields. Part
of the proof of equivalence of the two forms re-
quires finding the WL operator in the comma
theory. We have constructed the WL operator in
the comma formulation of Witten’s open bosonic
string which was the main obstacle in proving the
WL identities. The proof of the WL identities
and BRST - invariance are given in a sequel to
this paper [15].
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