
Performance Analysis of Apriori and Partitioning Method in 

Frequent Itemset Generation 

           M.Subithra  M.phil scholar,                                        Dr.SS.Dhenakaran Profssor, 

Department of computer science                                                 Department of computer science 

 Alagappa university,karaikudi.                                                   Alagappa University,Karaikudi. 

                                                 

 

Abstract: 

In Current decade,  Large volume of information 

sharing  in the world wide web. Particularly, 

Electronic commerce grows highly and stand on 

important place in the global market. Users buy 

all kind of products and walk around the market 

world through internet. For improving the 

business, Market analysis and consumer 

behavioral analysis is very important. Datamining 

is powerful techniques to dig the data for analysis 

purpose. Various algorithms achieve the optimal 

solution for analysis and researchers improve the 

existing algorithm and contribute novel methods 

for fine tuning the analysis process and solve the 

complex problems. Apriori is one of the most 

common techniques for finding the frequent 

itemset. This algorithm is used to gather the data 

for frequent data usage or data flow of the 

domain. The large amount of data split into 

different sets that the process is called partition 

algorithm. In this paper, the numerical dataset is 

applied in the apriori as well as partition 

algorithm and justify the performance of 

discovering the frequent itemset. For performance 

analysis, implement the both algorithm apriori 

and (PAFI) Partition Algorithm for mining 

Frequent Itemset. into hundred itemset data and 

deliver the result in term of time complexity 

 

                              I.Introduction 

Business sectors evaluate the market data for 

improving the sales. Datamining techniques help to 

analysis the large volume of data. Especially, The 

marketing industry use the mining techniques for 

analysis the sales information and customer 

behavior[8]. For market data analysis, historical data  

 

 

is very important for predict the future statement of 

business status. Massive amount of data hides the 

knowledge of information. The data are stored in to 

centralized database and acts as a large repository 

that is called data warehouse. The knowledge 

discovers from the data warehouse through 

datamining techniques that is leads to discover the 

kinds of knowledge and patterns. So many techniques 

avail to discover the knowledge and patterns.  There 

are several datamining techniques such as 

Association, Classification, Clustering, Prediction, 

Sequential patterns and decision making; they are 

applying into dataset to dick the knowledge. 

Association is one the familiar technique to discover 

patterns and generate the association rules[4][5]. In 

the association mining, findin frequency itemset is 

important process for generating the association 

rules. Researchers deliver various algorithms and 

techniques[6][7] to retrieve frequent item set. Apriori 

is one of the well known and common algorithm for 

finding the frequent itemset. Bottom up operation 

proceeds the apriori algorithm,where frequent subsets 

extended one item at a time. It is design to operate on 

database containing transaction. When applying the 

algorithm in large dataset. time complexity and 

memory space becomes high.  PAFI  overcome the 

limitation of Apriori algorithm. This is to do the 

partition the database into transaction in matrix 

format and find the frequent item set. The proposed 

works analyze the performance of Apriori and PAFI 

algorithm in term of time complexity. The analyse 

result shows the performance of PAFI and it is better 

than apriori 

                     

         

 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 57                   



          II.Apriori Algorithm 

The main objective of Apriori algorithm is to find the 

frequent itemset through sets of transaction from the 

large volume of dataset which is in 

datawarehouse[1][3]. Mainly , minimum support 

value and confident value are important parameters 

for generating the frequest item set.  The minimum 

support value decides the lower bound of the frequent 

itemset. The confidence value measures the firmness 

of the frequent item set. The confident value is used 

to generate the association rules. For frequent itemset 

generation, minimum support value is set as a 

constant value in iteration process. In iteration 

process, any subset of frequent itemset must be 

frequent itemset. The Apriori algorithm carryout a 

breadth-first search in the seek space by generating 

candidate k+1-itemsets from frequent k itemsets.  

The occurance of frequent items in each transaction 

counts the frequent itemset.  

Pseudocode of Apriori algorithm: 

Pass 1  

1. Generate the candidate itemsets in C1 

2. Save the frequent itemsets in L1 

Pass k  

1. Generate the candidate itemsets in Ck from 

the frequent  

itemsets in Lk-1  

1. Join Lk-1 p with Lk-1q, as follows:  

insert into Ck  

select p.item1, p.item2, . . . , p.itemk-

1, q.itemk-1  

from Lk-1 p, Lk-1q  

where p.item1 = q.item1, . . . 

p.itemk-2 = q.itemk-2, p.itemk-1 < 

q.itemk-1 

2. Generate all (k-1)-subsets from the 

candidate itemsets in Ck 

3. Prune all candidate itemsets from 

Ck where some (k-1)-subset of the 

candidate itemset is not in the 

frequent itemset Lk-1 

2. Scan the transaction database to determine 

the support for each candidate itemset in Ck 

3. Save the frequent itemsets in Lk 

 

                                      Data base table: 

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.no Items 

1 clinipuls 

2 pantene 

3 vatika 

4 clear 

5 Dove 

6 Sunsilk 

7 hamalaya 

8 Tide 

9 bizzpower 

10 wheelleman 

11 surfexcelmatric 

12 ultrapower 

13 Gain 

14 Ariel 

15 Vico 

16 pepsodent 

17 Advancewhite 

18 Closeup 

19 Crestfloran 

20 Ultrabrite 

21 oral-B 

22 fair&lovelly 

23 Garnier 

24 Humalaya 

25 headensholders 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 58                   



                    III.Partition Algorithm 

The partitioning algorithm divides the transactional 

dataset D into n non-overlapping partitions, D1, 

D2...Dn. The algorithm reduce the number of dataset 

process to two. During the first process, the algorithm 

finds all item sets in each partition. Those local 

frequent item sets are collected into the global 

candidate item sets. During the second scan, these 

global item sets are counted to determine if they are 

large across the entire dataset. The partitioning 

algorithm improves the performance of finding 

frequent item sets and also provide several 

advantages. Small partitions might be fit into main 

memory than large one. Because the size of each 

partition is small, the algorithm might reduce the size 

of candidate item sets. In addition, the algorithm 

require only two scans on the dataset. However, the 

partition algorithm reduce the size of cluster. In this 

method, each partitioned data is called as cluster, 

there is no clustering algorithm apply into the dataset. 

There are Many methods are available for partition 

the data. The choice of a particular method will 

depend on the type of output desired, the known 

performance of method with particular types of data, 

the hardware and software facilities available and the 

size of the dataset[11][10]. In general, clustering 

methods may be divided into two categories based on 

the cluster structure which they produce. The non-

hierarchical methods divide a dataset of N objects 

into M clusters, with or without overlap. In PAFI non 

overlapping algorithm uses for creating partitions. 

These methods are sometimes divided into 

partitioning methods, in which the classes are 

mutually exclusive, and the less common clumping 

method, in which overlap is allowed. Each object is a 

member of the cluster with which it is most similar;  

however the threshold of similarity has to be defined. 

The hierarchical methods produce a set of nested  

clusters in which each pair of objects or clusters is 

progressively nested in a larger cluster until only one  

cluster remains. The hierarchical methods can be 

further divided into agglomerative or divisive 

methods. In agglomerative methods, the hierarchy is  

build up in a series of N-1 agglomerations, or Fusion, 

of pairs of objects, beginning with the un-clustered 

dataset. The less common divisive methods begin 

with all objects in a single cluster and at each of N-1  

steps divides some clusters into two smaller clusters, 

until each object resides in its own cluster. The 

partitioning methods generally result in a set of M 

clusters, each object belonging to one cluster. Each 

cluster may be represented by a centroid or a cluster 

representative; this is some sort of summary 

description of all the objects contained in a cluster. 

The precise form of this description will depend on  

 

 

the type of the object which is being clustered. In 

case where real-valued data is available[9], the 

arithmetic mean of the attribute vectors for all objects 

within a cluster provides an appropriate 

representative; alternative types of centroid may be 

required in other cases, e.g., a cluster of documents 

can be represented by a list of those keywords that 

occur in some minimum number of documents within 

a cluster. If the number of the clusters is large, the  

centroids can be further clustered to produces 

hierarchy within a dataset. 

 

Pseudocode of partition algorithm: 

Input: 

D=dataset 

K= the number of centers 

C=initial centroids 

Output: Set of k representing a good partitioning of D  

database and produce the frequent pattern. 

1: Select the initial data set 

2: for all data point di € D do 

3: assignedCenter =di.center 

4: assignedPartiton= di.partition 

5: for all center ci €C do 

6: apply on the Item set Ii €I 

7:  Xn ,n=1,2,3......N 

8: A partition P  of an interval I is a set of M blocks, 

9: P(I)={Bm ,m € M },M={1,2...M} 

10: where the blocks are sets of data cells defined by  

index sets Nm:: Bm ={Xn,n € Nm} 

11: enter key (n) for partition. 

12: Find count (item set) 

13: if(count (item set) isEven()) 

{If key (even) 

{Partition in n/2 sets 

}Else 

{Partition in n+/2 sets 

}14: if(count(itemset) isOdd()) 

{If key(even 

) 

{Partition in n+/2 sets 

}Else{ 

Partition in n /2 sets} 

15: find frequent pattern for the local partition until 

all  

local partition finishes 

16: Combine all local partition and find the global  

partition. 

17: Finish 

 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 59                   



            Database splited table: 

 

 

Table : Partition P1 

1 clinipuls 

2 pantene 

3 vatika 

4 clear 

5 Dove 

6 Sunsilk 

7 hamalaya 

8 Tide 

9 bizzpower 

10 wheelleman 

 

Table Partition P1(1) 

6 Sunsilk 

7 hamalaya 

8 Tide 

9 bizzpower 

10 wheelleman 

 

Table Partition P2 

11 Surfexcelmatric 

12 ultrapower 

13 Gain 

14 Ariel 

15 Vico 

16 pepsodent 

17 Advancewhite 

18 Closeup 

19 Crestfloran 

20 Ultrabrite 

21 oral-B 

22 fair&lovelly 

23 Garnier 

24 Humalaya 

25 Headensholders 

 

Table P2(1) 

16 pepsodent 

17 Advancewhite 

18 Closeup 

19 Crestfloran 

20 Ultrabrite 

21 oral-B 

 

 

 

S.no Items 

1 Clinipuls 

2 Pantene 

3 Vatika 

4 Clear 

5 Dove 

6 Sunsilk 

7 Hamalaya 

8 Tide 

9 bizzpower 

10 wheelleman 

11 Surfexcelmatric 

12 ultrapower 

13 Gain 

14 Ariel 

15 Vico 

16 Pepsodent 

17 Advancewhite 

18 Closeup 

19 Crestfloran 

20 Ultrabrite 

21 oral-B 

22 fair&lovelly 

23 Garnier 

24 Humalaya 

25 Headensholders 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 60                   



Table Partition P1(2) 

11 Surfexcelmatric 

12 ultrapower 

13 Gain 

14 Ariel 

15 Vico 

 

Table Partition P2(2) 

22 fair&lovelly 

23 Garnier 

24 Humalaya 

25 Headensholders 

 

 

Table  Merged Partition P1(3) 

7 hamalaya 

8 Tide 

12 ultrapower 

13 Gain 

 

Table Merged Partition 2(3) 

23 Garnier 

24 Humalaya 

18 Closeup 

19 Crestfloran 

 

Table  Final Result. 

24 Humalaya 

8 Tide 

13 Gain 

19 Crestfloran 

 

P1,P2 are initial partitions which is split from original 

dataset, p1(1), p1(2) are partition table which is split 

number inititial partition P1. Partition2(3)  elements 

are incorporated from P1(1),P2(2). Final result 

merges all partitions and create overll table result. . 

In this paper, the entire database is splitted into non 

overlapping partitions of various sizes, each partition 

represents as a cluster[2]. Cluster loads in the 

memory  and computing large dataset  and the  Each 

cluster is considered one at a time by loading the first 

cluster into memory and calculating large itemsets 

and the ensuing support counts. Number of partitions 

fit in to memory space based on the side of partitions. 

The  partition dataset reduce the consumption of 

memory space.  Then the second cluster is considered 

as same process followed in the first cluster and the 

cumulative support count is calculated for the 

cumulative large itemsets. These steps are continued 

for the all set of clusters and finally we have the 

whole large itemsets and the corresponding 

cumulative support counts. This approach reduces the 

consumption of memory space since it considers only 

a small cluster at a time and hence it is scalable for 

any large size of the database. For discovering the 

large itemsets it is sufficient to go through the 

transactions into the partitioned itemset alone. There 

is no need to iterate the entire database again. Hence 

it decreases the redundant database inspection and 

increase the efficiency. Memory space management 

directs to  improve the performance of formulating 

the frequent item set. So the time complexity is 

decrease when compare to apriori algorithm. So the 

performance of PAFI is efficient while handling the 

large amount of data than apriori 

                      IV. Experimental Results 

Apriori  and PAFI  are implemented in  Java platform 

which build with  Windows 7 operation system. 

Initially the dataset perform the preprocess that is 

called binary conversion. If the value is present in the 

itemset , set the binary value as 1. If the value is not 

present in the itemset, set the binary value as 0. 

Minimum support value is very important parameter 

for generating the frequent itemset.  The number of 

frequent itemset generation varies from the minimum 

support value.  

Table 1. Apriori algorithm with Min Support value 

0.5 

 

No    of      Itemset 

 

Time complexity in 

mili seconds 

 

25 

 

383 

 

50 

 

1128 

 

100 

 

3323 

 

 

 

Table 2. PAFI algorithm with Min Support value 0.5 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 61                   



 

No of   Itemset 

 

Time complexity in 

milli seconds 

 

25 

 

231 

 

50 

 

923 

 

100 

 

1761 

 

On the comparsion of time complexity, the apriori 

algorithm consume more time of finding the frequent 

itemset than partition algorithm for finding frequent 

item set.  

                           V. Conclusion 

In association mining techniques, finding frequent 

itemset is basic operation for generating the 

association rule. Researchers have approached 

various methods to mine the frequent itemset. In this 

paper. Apriori algorithms and compared in terms of 

time complexity.The efficiency of PAFI is better than 

Apriori when compared to iteration process, time 

complexity and utilization of memory space. 

                                 Reference 

[1] Agrawal R, Imielinski T, Swami A, “Mining 

association rules between sets of items in large 

databases”. In: Proc. of the l993ACM on 

Management of Data, Washington, D.C, May 1993. 

207-216. 

 

 

[2] D.Kerana Hanirex, Dr.M.A.Dorai Rangaswamy:” 

Efficient algorithm for mining frequent item sets 

using clustering techniques.” In International Journal 

on Computer Science and Engineering Vol. 3 No. 3 

Mar 2011. 1028-1032. 

  

 

[3]Margatet H. Dunham. Data Mining, Introductory 

and Advanced Topics: Upper Saddle River, New 

Jersey: Pearson Education Inc.,2003.  

 

 

 [4] Tong Qiang, Zhou Yuanchun, Wu Kaichao, Yan 

Baoping, “ A quantitative association rules mining 

algorithm”. Computer engineering. 2007, 33(10):34-

35. 

 

 

[5] Wael A. AlZoubi, Azuraliza Abu Bakar, 

Khairuddin Omar,” Scalable and Efficient Method 

for Mining Association Rules”, International 

Conference on Electrical Engineering and 

Informatics 2009.  

 

 

[6] Wael Ahmad AlZoubi, Khairuddin Omar, 

zuraliza Abu Bakar “An Efficient Mining of 

Transactional Data Using Graph-based 

Technique”,3rd Conference on Data Mining and 

Optimization (DMO) 2011, Selangor, Malay. 

 

[7] R. Agrawal and R. Srikant, "Fast Algorithms for 

Mining Association Rules," in Proceedings of the 

20th VLDB Conference, 1994, pp. 

487−499. 

 

 

[8] Arun K Pujari. Data Mining Techniques (Edition 

5):Hyderabad, India: Universities Press (India) 

Private Limited, 2003. 

 

[9] Margatet H. Dunham. Data Mining, Introductory 

and Advanced Topics: Upper Saddle River, New 

Jersey: Pearson Education Inc., 2003. 

 

 

[10] Jiawei Han. Data Mining, concepts and 

Techniques: San Francisco, CA: Morgan Kaufmann 

Publishers.,2004. 

 

 

[11] Akhilesh Tiwari, Rajendra K. Gupta, and Dev 

Prakash Agrawal “Cluster Based Partition Approach 

for Mining Frequent Itemsets”  In Proceedings of the 

IJCSNS International Journal of computer Science 

and Network Security, VOL.9 No.6, June 2009. 

 

 

 

 

 

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-2 | Issue-8 | August,2016 | Paper-8 62                   




