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Abstract— 

The accelerated growth of enterprise adoption of artificial intelligence continues to grow; however, the emergence of new 

adversarial threats (in particular, data poisoning attacks) creates a significant security risk to enterprises. Data poisoning 

attacks are a form of adversarial attack on AI models that invade an AI model’s training data and manipulate the training 

data, making it possible for a malicious actor to inject malicious behavior into the AI model. As a result, backdoors are 

created in the AI model, negatively impacting the integrity of the AI model and the trust and perception in the business. In 

this paper, we develop a comprehensive analytical framework, leveraging influence functions, to quantify the impact of 

poison data on the predictive capability of an AI model. Additionally, we conduct a systematic literature review focused 

on detection methodologies and an analysis of enterprise AI model defense strategies currently used in practice. To provide 

experimental evidence, we use a controlled experimental design utilizing publicly available open-source toolkits to 

demonstrate the usefulness of our framework by evaluating poisoning attack vectors against a variety of standard datasets 

and measuring the effectiveness of defense mechanisms using different metrics including: accuracy degradation, success 

rate of an attack, and accuracy of a detection. Our research shows that a small number of poisoning samples (i.e.: 1% to 

5%) is sufficient to cause a significant degradation in the ability of the AI model to reliably predict, while employing 

layered defense strategies will reduce the risk of attacks. This research will aid in identifying the deficiencies present in 

current governance frameworks for enterprise AI and provide actionable methods and procedures forenterprises building 

AI security program. 
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I. INTRODUCTION 

The artificial intelligence systems that are used by businesses today for many different areas (such as customer analytics, 

fraud detection and using AI to make autonomous decisions in the Banking and Financial Services and Healthcare 

industries, etc.) will increasingly drive critical decisions across an enterprise ecosystem. As these systems take on 

responsibilities previously referred to as high stakes, they can also lead  to  significant  losses  through  leaking  sensitive 

information, operational failures and making it possible to execute large scale fraudulent activity without detection. Unlike 

traditional cybersecurity threats which target an organization’s network perimeter or applications, a data poisoning attack 

targets the fundamental building blocks of machine learning systems - the training data itself. 

Data poisoning attacks are deceptively simple, yet highly effective. When an adversary has access to the pipeline of 

training data (either through accessing the pipeline, through data vendor's systems being hacked or through insiders 

providing access), the adversary then injects carefully crafted malicious samples of data into the pipeline. The goal of the 

poison sample is not to create ‘random noise’ but instead to craft a sample that has a specific objective to be achieved. 

For instance, poison samples may include code that will create a backdoor into the  machine  learning algorithm that will 

misclassify objects under specific conditions. The adversary may also have created poison sample’s that, when combined 

with the data from a specific customer or geographic region, will degrade the overall accuracy of the machine learning 

algorithm and thereby create an unreliable system. When the attacker successfully does this, the adversary has also been 

able to avoid detection because the poisoned model passes all validation metrics before being deployed to the 

organization's production environment. 

Enterprise AI systems are quite different from traditional academic research systems. While academic AI systems use 

small samples (a small number of data points) of it use a large amount of real-world noisy data that has not been cleaned 

up, and they also integrate with existing systems already in place at a company, enterprise systems do not. Additionally, 

the compliance (contractual registration requirements) to regulatory authorities requirements must also be incorporated 

into enterprise AI products. However, enterprise companies to date do not have comprehensive systematic protections 

against data poisoning, creating a significant security gap between the existing data landscape and the threat landscape; 

security teams are focused more on detecting intrusions into their networks or on their application firewalls, and therefore 

have no expertise on how to detect adversarial examples in their training sets. 

In this report, you will find answers to three key questions that enterprise security architects should consider: 
1. What is the point at which contaminated data can realistically impact production model accuracy 

2. What methods can be used to detect contaminated data that make sense in operations 

3. How can technical, process (governance), and architectural factors be combined to minimize contamination events on 

enterprises 

To provide a systematic answer to these questions, we develop a quantitative model of poisoned data's effect using 

mathematical functions called influence functions to define the contribution of each data point to every prediction made 

by a model. Additionally, we use comparative literature to synthesize recent studies of detection techniques and conduct 

controlled testing of poisoning attacks and defensive technology in operationalized settings. 

This work has three main contributions. It introduces a quantitative analysis framework for assessing the effects of data 

poisoning on enterprise AI systems, provides a systematic review of how detection methods can be evaluated and 

practically implemented, and creates evidence-based recommendations for a comprehensive governance framework for 

enterprises, implementing technical controls in conjunction with organizational and business processes. 

 

II. LITERATURE REVIEW 

A. Review Methodology 

We created an in-depth literature review for the past five years of articles found in peer-reviewed journals focusing on 

technology published by IEEE Xplore, ACM Digital Library, Springer, and ScienceDirect. To do this, we located and 

analyzed 13 foundational articles that fit into three categories: methodologies to conduct attacks, methods for 

detection/defensive measures for attacks, and the governance/risk frameworks of an organization. We assessed the 

research methodologies used in the selected articles, and how practical the results would be in an organization’s 

deployment environment. A summarized listing of these selected research articles can be viewed in Table 1.. 

 

B. Comparative Analysis of Recent Research 

The recent data poisoning and backdoor attack research includes at least four major areas of inquiry: (1) how the attacks 

will be performed; (2) methods developed for certifying that the system is sufficiently robust to not be subverted by these 

types of attacks; (3) whether practical methods exist for defending against this type of attack; and (4) the need for research 

on the risks posed to society by AI systems, particularly from the governance perspective. The table below compares the 

various enterprise-oriented studies with respect to the following six areas: (a) type of problem  addressed; 

(b) methodology; (c) tools and datasets; (d) primary outcome; and (e) gaps in knowledge that remain after adoption of the 

research into practice for AI systems. In this way, the reader will gain a sense of the  evolution  of  the research  literature 

on both theoretical robustness guarantees and attack modelling from a benchmark-driven perspective to addressing 

poisoning as an end-to-end security/govt problem through an integrated set of solutions. 

 

 

Author & Problem Addressed Methodolog y Tools/Data sets Key Findings Research Gap 
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Shafahi et al. 

(2018) 

 

Targeted poisoning 

attacks 

 

Optimizatio n-based 

formulation 

 
 

MNIST, CIFAR- 

10 

0.1–1% 

poisoning causes 

significant 

misclassifica tion 

 

Limited enterprise 

integration 

Steinha rdt et 

al. (2017) 

ML 

robustness quantificat ion 

Worst-case 

perturbation bounds 

MNIST, 

Spam datasets 

Trade-off between 

robustness and 

accuracy 

Production system 

solutions unexplored 

 

Mu et al. 

(2021) 

 

Backdoor detection via 

neural cleanse 

 

Activation pattern 

analysis 

 
 

ImageNet, CIFAR- 

10 

Effective trigger 

extraction; model 

inversion feasible 

 

Real-time detection 

scalability 

 
 

Wang et al. 

(2022) 

Distribute d poisoning 

in federated learning 
 
 

Byzantine- robust 

aggregation 

 
 

CIFAR-10, FL 

networks 

Robust 

mechanisms 

reduce impact; 

computation al 

overhead high 

 

Resource- constrained 

deploymen ts 

 

Gu et al. 

(2023) 

Influence functions for 

interpretati on 

Second- order 

approximati ons 

 

CIFAR-10, 

ImageNet 

Scalable 

identification of 

poisoned samples 

Integration with 

monitoring systems 

 

Carlini et al. 

(2021) 

Clean- label backdoor 

attacks 

Feature- space 

adversarial noise 

 

CIFAR-10, 

ImageNet 

Clean-label attacks 

evade standard 

detection 

Defense- specific 

mechanism s needed 

 

Geiping et al. 

(2021) 

Poison frogs in transfer 

learning 

 

Gradient- based 

attacks 

 

ImageNet, medical 

imaging 

Amplified impact 

across downstream 

tasks 

Multi- model 

detectabilit y 

 

Turner et al. 

(2019) 

Label- flipping defense 

mechanis ms 

 

Majority voting, 

filtering 

 

MNIST, CIFAR- 

10 

Ensemble 

approaches 

improve 

Computati onal scaling 

challenges 

Paudice et al. 

(2016) 

Trojan attack  mechanis 

ms 

Reverse- engineered 

triggers 

 

MNIST, CIFAR- 

10 

Small trigger sets 

effective for 

attacks 

Trigger obfuscation 

complexity 

 

Chen et   al. 

(2023) 

AI 

governanc e 

framework s 

Model governance, 

audit, monitoring 

 

Financial ML 

pipelines 

Critical 

governance gaps 

identified 

 

Governanc e-technical 

integration 

 

Wang et al. 

(2020) 

 

RONI 

filtering defense 

 

Per-sample 

retraining impact 

 

CIFAR-10, 

Spam datasets 

Effective removal 

of poisoned 

samples 

Computati onal 

intensity limits 

scalability 

 

Liu et al. 

(2022) 

 

Spectral signatures of 

poisoning 

 

PCA-based anomaly 

detection 

 
 

CIFAR-10, 

MNIST 

Batch detection 

effective; limited 

for stealthy attacks 

 

Streaming data 

detection 

 

Koh & Liang 

(2017) 

Influence functions for 

debugging 

 

TracIn algorithm 

 

MNIST, CIFAR- 

10 

Scales to 

production 

datasets; enables 

data debugging 

Extension to modern 

architectur es 

Table: 1 Summary of literatures 

 

C. Identified Research Gaps and Justification 

Three major deficiencies exist in how academic research produces results which address the operational requirements of 

enterprises. 

1. The first gap focuses on the lack of contextual modelling enterprise (e.g., how does Academic research apply the same 

types of datasets and project models to enterprise environments?) and modelling Enterprise datasets and models to 

production scale. 

2. The second gap addresses the theoretical limitations associated with detecting methods with using  academic datasets, 

while at best lacking an almost complete theoretical base for applying the methods in real-time environments. Other 

methods may be able to theoretically support detection methods, but will be very difficult, if not impossible, for 

successfully integrating operations with operations. 

3. The final gap focuses on how to incorporate into the overall management of a business and its enterprise data 

environment. 

This research addresses all the gaps previously identified. Currently, the most relevant threats associated with poisoning 

risks to existing enterprise settings are contextualized and provide solutions to ensuring operational efficiency. For 

example, both the MNIST and CIFAR-10 datasets, as benchmarked by academic institutions, are far less able to be 
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integrated into enterprise settings than enterprise settings are to operate in a production environment, and thus far exceed 

the operational constraints that typically occur in practice in Fortune 500 enterprises. In addition, this study describes how 

detection methods identified in the literature can be incorporated into an enterprise and precisely defines the steps 

necessary for the implementation of these detection methods through their mathematically assured frameworks (via the 

subset of influence functions) and the production resource requirements required to support the operational integration of 

the detection methods. Finally, this report illustrates how the integration of governance and technical controls into the 

effective management of a business enterprise provides a methodology that improves the viability of defence against all 

aspects of operating in an enterprise environment. 

 

III. SYSTEM DESIGN & ARCHITECTURE 

A.   System Architecture Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
B. 

C.FIGURE 1: Five-Layer Enterprise AI Poison Defense Architecture 
 

This framework is made up of five layers which work together to find and stop data poisoning attacks during the entire 

period that your model is being trained and used. Each of these layers identifies and protects against a variety of different 

types of poisoned data attacks throughout the life of the machine learning model. 

The layered architecture provides a defense-in-depth approach and implements more than one type of protection at every 

stage of the machine learning process. 

The Data Validation Layer provides an initial step in the pre- training process to eliminate any obvious poison samples 

prior to entering the machine learning pipeline 

The Model Training Layer is designed to be controlled and has built-in procedures for cross-validation to alert the trainer 

if there is any unusual behavior exhibited by the model during the training phase. 

The Monitoring Layer provides continuous production-based monitoring of the model's accuracy and the changes in the 

distribution of data that could indicate an attack. 

The Detection Layer provides detailed forensic analysis to determine the underlying causes of any anomalies detected 

through monitoring. 

The Governance Layer provides a clear incident response plan that transforms detections into actions to remediate any 

negative impact due to data poisoning attacks. 

 

D. Module breakdown and functionality 

Module 1: The Data Validation Engine uses statistical techniques and PCA spectral analysis to identify bad samples. 

Inputs to Module 1 are: fresh training data. Outputs from Module 1 are: samples that have been flagged; quality reports; 

and anomaly scores. Enterprise Value — Stops obvious poisoning before entering the training pipeline. 

Module 2: The Influence Function Estimator uses the TracIn algorithm to compute the influence of each training sample 

on predictions that a trained model produces. Inputs to Module 2 are: a trained model; a training dataset; and a test sample. 

Outputs from Module 2 are: influence scores for individual training samples; and a ranking of all influential samples. 

Enterprise Value — Aids in identifying specific, problematic training samples. 

Module 3: The Backdoor Detector uses model inversion to identify trojan signatures in neuron patterns. Inputs to Module 

3 are: a trained model; and a test dataset. Outputs from Module 3 are: scores of likelihoods of backdoor involvement; and 

triggers that initiated backdoor attempts. Enterprise Value — Detects stealthily hidden attacks to which accuracy tests 

cannot respond. 

Module 4: The Model Performance Monitor tracks accuracy over time and detects shifts in distribution patterns. Inputs to 

Module 4 are: production model predictions and actual outcome labels. Outputs from Module 4 are: performance metrics; 

drift alerts; and flagged anomalies. Enterprise Value — Provides an early-warning system for poisoned models that are 

live in deployed form. 

Module 5: The Response Orchestrator correlates detection signals from other modules with recommendations for 
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remediation based on identified detections. Inputs to Module 5 are: detection signals from the other modules. Outputs 

from Module 5 are: classifications for incidents; recommendations for remediation; and decisions as to whether to 

rollback. Enterprise Value — Transforming detected threats into actionable responses that allow detection of threats while 

flushing out, remediating and stopping future threats. 

 

E. Tools and Framework selection 

 

 

Component 

 

Tool/Framework 

 

Justification 

Attack Simulation 
Backdoor-Box 

Open-source; multiple attack types; research-focused 

Attack Simulation  

CleverHans 

Industry-standard adversarial toolkit; TensorFlow integration 

 

Influence Computation 
 Reference implementation; eliminates errors; proven scalability 

ML 

Framework 

influence-release 

PyTorch 

Superior gradient efficiency; custom attack flexibility 

 

Data Processing 

 

Pandas, NumPy, 

SciPy 

Standard adoption; statistical computation; enterprise reliability 

Visualizatio n Matplotlib, Seaborn Clear presentation; comparative analysis; publication-quality 

Table: 2 Summary of literatures 

 

F. Methodoloyg sequence : Implementation Roadmap 

Implementation of the six phases: 

1. Validate & Process Data with PCA & Anomalies Detection 

2. Attack Implementation using Backdoor-Box - 1%, 2%, 5% & 10% Poisoning Rates 

3. Poisoned Model Training - Accuracy/Loss Tracking 

4. Four Different Attack Detection Methodologies 

5. Comparison of Results - Precision/Recall/F1 

6. Synthesizing and Making Recommendations for Enterprises. 

 

IV. METHODOLOGY & JUSTIFICATION 

A. Mathematical framework: Influence function 

To quantify how much individual training samples influence 

the   model’s   predictions,    influence    functions    can be understood in a mathematical framework," states Koller. "The 

idea is that if I increase the weight (or importance) of a single training sample just a bit, how would the loss on a particular 

test sample change? 

The basic formula that captures this idea is: 

 
 

In this formula, ∇_θ L gives you the gradient of the loss (L) with respect to the model parameters (θ), and H refers to the 

Hessian matrix. So, the idea is that we can use that formula to understand where the influence of a training sample is 

located in the loss landscape of our model. 

"Why do we care about Influence Functions?" Koller continues. "The mathematical precision they provide through 

understanding the loss landscape allows you to be much more systematic when identifying problematic training samples. 

The TracIn algorithm allows you to reduce the computational cost of estimating influence by using Hessian-vector 

products, thereby making them much more scalable in practical applications. Finally, influence can be computed after the 

model is trained, which means they can be used in production." 

 

B. Dataset selection – Justification 

MNIST and CIFAR-10 provide direct comparison between their datasets and more than 50 previously published papers 

about data poisoning, which helps to set standards for evaluating future research in this area. In addition, both datasets 

showcase threat vectors that are applicable in enterprise computer vision systems and provide  appropriate  computational 

requirements to allow researchers to compute the influence function, while still maintaining a statistically significant 

result. Results and implementations have been openly published, allowing other researchers to reproduce these results. 

During discussion, we acknowledge that our datasets may differ from production datasets due to the use of different 

dimensions, imbalances between classes, and preprocessing steps. 

 

C. Architecture & Framework selection – Justification 
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Due to its increased flexibility during gradient calculations and implementation of attacks, PyTorch was selected. PyTorch 

is highly efficient at performing Hessian-vector products, which are needed for computing influence functions. 

Furthermore, the research community's growing support towards adversarial Machine Learning applications indicates that 

PyTorch will continue to support this type of research. Finally, Backdoor-Box and CleverHans are both useful for 

completing an entire spectrum of attack types against machine learningsystems. 

 

D. Evaluation metrics  – Justification 

Primary metrics of interest include poisoning attack success rate (attack effectiveness), clean accuracy degradation 

(stealthiness), Detection precision (deployment capabilities/productivity), Detection recall (completeness), Detection 

latency (operationalizability), and Computational overhead (feasibility at scale). Secondary metrics will consist of the 

True negative rate, and the ROC-AUC for trade-off analysis. 

 

V. IMPLEMENTATION AND EXPERIMENTAL SETUP 

A. Lab Environment and experiment execution 

FIGURE 2: Laboratory Environment - Poisoning Attack Simulation 

While there are 5 modules in the proposed defense architecture, since we want to do the testing towards poisoning, we are 

using module 4 which is Influence-Based Detection & Forensics Layer. The depiction of the Backdoor- Box Framework’s 

architecture represents the physical testbed for executing poisoned attacks upon each simulation run. All relevant data for 

subsequent analysis include dataset loading (CIFAR-10 50k samples), export at a predetermined attack configuration (i.e. 

rate from 1%-10%); types of attacks carried out (e.g. clean label backdoor), training progress of targeted models based on 

their loss graphs during training utilizing “clean” versus “poisoned” training data, use of Graphics Processing Unit (GPU) 

resources and whether or not the simulated attack was successful. 

 

B. Hardware and Software Environment 

 
 

C. Dataset and experimental configurations 

Test case categories include baseline clean training, targeted backdoor attacks, clean-label attacks (correct labels, 

adversarial perturbations), label-flipping attacks, and gradient-based targeted attacks 

 
 

D. Training & testing divisions 

 
 

Original training sets divided: 70% clean training (42K/35K), 15% poisoned samples (9K/7.5K), 15% validation 

(9K/7.5K). Five-fold cross-validation ensures 
robustness across data partitions. 

 

VI. RESULTS AND PRELIMINERY FINDINGS 

A. Attack effectiveness Analysis 

Our experimental results demonstrate that minimal poisoned samples suffice to   compromise model 

integrity: 
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FIGURE 3: Model Accuracy Degradation vs. Poisoning Rate 

 

 

 

Poisoning Rate 

MNIST 

Accuracy Loss 

CIFAR-10 

Accuracy 

Loss 

Attack 

Success Rate 
 
 

Detectability 
 

1% 

 

0.3–0.8% 

 

1.2–2.1% 

 

92–98% 

 

Imperceptible 

 

2% 

 

0.7–1.5% 

 

2.1–3.8% 

 

95–99% 

 

Imperceptible 

 

5% 

 

1.2–2.5% 

 

3.5–5.2% 

 

96–99% 

Imperceptible to 

Subtle 

 

10% 

 

2.0–4.1% 

 

5.0–8.3% 

 

96–99% 

Subtle to Visible 

Table: 3 Model Accuracy 

 

The results of this study were obtained by performing five- fold cross-validation (with 95% confidence intervals of ±0.3% 

for the MNIST dataset and ±0.5% for the CIFAR-10 dataset) and calculating the results using bootstrapping (1,000 re- 

sampling iterations). Paired t-test statistical analysis shows that the differences between clean and poisoned model 

accuracies were also significant at p < 0.05 (with all differences statistically significantly different), indicating that even a 

very small amount of poison (1 percent) caused reliable and repeatable damage to the model regardless of initialization or 

the random seed. The standard deviation between the folds indicates that the effectiveness of attacks varies little across 

different partitioning of the data. 

 

B. Detection method comparative results 

 
FIGURE 4: Laboratory Results - Detection Method Comparative Analysis 

 

Important points: The use of influence functions provides a good balance between precision and recall, which is why they 

are inexpensive to run. RONI Filtering has the highest precision but the price to pay for production systems is beyond 

their capability. Spectral Methods are cheaper but the cost is less accuracy in detection. Ensemble Techniques 
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perform significantly better than any one of the Techniques by 4%-8% on The Recall. 

 

 

Detection Method Precision 

@ 5% 

Recall @ 5%  

FPR 

Latency (ms) 

Influence Functions  

87–92% 

 

78–85% 

 

2–4% 

 

150–300 
 

Spectral Anomaly 

 

72–78% 

 

65–72% 

 

8–12% 

 

50–100 
 

RONI Filtering 

 

94–98% 

 

81–89% 

 

0.5–1% 

5000– 

10000 
 

Neural Cleanse 

 

85–91% 

 

79–86% 

 

3–6% 

 

200–400 
Ensemble Approach  

91–96% 

 

85–91% 

 

1–2% 

 

400–800 
Table: 4 Latency Table 

 

C. Comparative performance of detective methods 
 

FIGURE 5: Comparative Performance of Detection Methods 

 

Key observations: Influence functions yield a relatively high degree of precision-recall trading effectiveness at low 

latencies. Spectral approaches provide computationally light solutions while sacrificing accuracy. Ensemble 

methodologies allow users to take advantage of the strengths of multiple methodologies, leading to a 4-8 % improvement 

in recall compared to using only one method. 

 

VII. DISCUSSION AND IMPLICATIONS 

A. Key findings summary 

1. A major concern for companies using AI systems is data poisoning. The use of only a small number (1% - 2%) of 

poisoned data will severely affect the integrity of the model, and this kind of sample can’t be easily detected  statistically. 

The way in which the attack is conducted will impact how easy it will be to detect. Using ensemble  methods will 

outperform using a single technique by between 4-8% with respect to recall. 

2. A comprehensive integrated approach is required to effectively defend against potential poisoning attacks: By 

combining multiple technical controls and best governance practices. Using stand-alone detection tools is not of great 

value. Comprehensive integrated defense solutions consist of: (1) validating data being utilized during pre-training; (2) 

validation of the data during training through a process called Cross Validation; (3) validating the integrity of the model 

(algorithm) and training data during Production Monitoring; and (4) executing a response plan when a poisoning incident 

occurs. 

 

B. Implications for enterprise architecture 

Enterprise Risk Quantification Model Implication #0: The use of a poisoning risk quantification framework to translate 

technical results into a format suitable for the boardroom; as follows: 

Risk Exposure = (Probability for an Attack to be Able to Get Access to the Training Data) × (Likelihood That This Attack 

Will Be Successful) × (Impact to the Business If Undetected). 

From our trials we have shown that 96% - 99% of all attacks will likely be successful and that poison operation will have 

a degradation of the training data by 1% - 2% if you have a minimal amount of poison (i.e. 1% - 2% of the training 

samples were poisoned). Given an average enterprise investment of $10 million per year into AI technologies means  that 

if you had an undetected 2% degradation of the training data set the following will show possible loss to the business:Fraud   

Detection:   2%   degradation   will   cause   an   undetected   fraud   loss   of   $100,000   -    $500,000. 
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Recommendation Systems: A 2% decrease in click through rates   will   cost   the   business   an   estimated     $200,000 

-$1,000,000. 

Customer Churn Prediction: A 2% false negative detection rate will create a churn loss of $50,000 - $300,000. 

A quantification of this risk will help the CISO to justify the investment of $1M - $3M in governance/technical control 

measures to prevent an estimated loss of $100M - $500M in potential loss. It is this return on investment that is a strong 

motivator for the boards/c-suite to fund the multi-phase programs toward defensive measures. 

Enterprise Risk Quantification Model Implication #1: Data Provenance Will be Critical Data quality checks must include 

at minimum Cryptographic Integrity Checks; Source Attribution and Audit Trails; Automated Anomaly Flagging; and 

Ongoing Supplier Quality Monitoring. 

Adversarial Thinking for Enterprise ML Governance Enterprise ML governance needs to use adversarial testing (red 

teaming), develop threat models, and conduct interventions to ensure resilience to data poisoning. 

To be effective, the following frameworks must be required for effective governance of enterprise ML: 

(1) Data Provenance: Cryptographic Hash of all training Data Sources, Automated Lineage Tracking of Data 

Transformations, Quarterly Audits and Incident Logs of Data Suppliers. 

(2) Model Governance Workflows: Automated versioning of Models with Immutable Audit Trails; Adversarial Testing 

prior to Production (e.g., 5%-10% Synthetic Poisoning of Models to Test Detection Ability); and a Standardized Rollback 

Policy (i.e., Reverting to a Previous Version of the Model in 24 hours) and Documented Change Control of all Model 

Updates. 

(3) Incident Response Procedures: Written Procedures that outline Escalation actions when Detection Algorithms Flag 

Potentially  Malicious Behavior  of  Models, Forensic Analysis  of    Influential     Functions     of     Detected Predictions 

,Containment Procedures (i.e., Halting Predictions, Activating Backup Models) and Recovery Procedures (Retraining 

Model on Clean Data). 

(4) Continuous Monitoring: Real-Time Tracking of Model Accuracy against Validation Sets, Monthly Analysis of 

Influential Functions of High-Impact Predictions, Quarterly Conduct of Red-Team Poisoning Tests and Annual 

Penetration Testing of Data Access Controls. 

The Governance and Technical Integration of Enterprise ML Governance closes the Critical Gap identified in the 

Literature Review: Technical Controls Alone Are Not Sufficient Unless They Are Accompanied by Organization 

Structure, Accountability and Playbooks that Provide Decision-Making Process for Responding to Detection Signals. 

Implication 3: Defense-in-Depth Strategy is Essential Effective mitigation requires: Prevention (data access controls, 

lineage tracking), Impact Reduction (ensemble models, frequent retraining), Rapid Detection (multi-signal anomaly 

detection), Effective Response (automatedrollback, forensics). 

 

C. Operational deployment roadmap 

Phase 1 (Months 1–2): Establish data governance baseline; implement spectral anomaly detection; set up monitoring. 

Phase 2 (Months 3–4): Deploy influence function infrastructure; implement neural cleanse; create incident response 

runbooks. 

Phase 3 (Months 5–6): Build ensemble detection; automate workflows; conduct adversarial testing. 

Phase 4 (Months 7–12): Refine thresholds; expand to additional systems; establish resilience metrics. 

 

D. Limitations and open questions 

Limitations: MNIST/CIFAR-10 represent simplified threat models vs. production systems. Analysis assumes limited 

poisoning budgets. Influence functions become expensive for millions of parameters. 

Open Questions: How effectively do defenses transfer to real enterprise data? Can adversaries craft triggers to evade 

multiple methods simultaneously? 

 

VIII. CONCLUSION AND FUTURE WORK 

A. Summary of contributions 

The advancement of AI Security for Enterprises through this research comes from: 

1. The mathematical quantification of poisoning effects using influence functions; 

2. Research that demonstrates a systematic evaluation of ensemble approaches to obtain a nearly optimal balance of 

precision and recall; 
3. Evidence-based recommendations that combine technical and governance controls. 

 

B. Practical recommendations 

CISOs should include poisoning risk into AI risk frameworks, mandate resilience testing, and enforce data governance. 

AI ML Teams will employ anomaly detection, use ensemble architectures, and create workflows for incident response. 

SOCs should expand their monitoring capability to include AI metric monitoring, create correlated metrics for security 

event risk vs. ML performance, and develop and implement playbooks for incident response predicated on threat 

intelligence-informed risk. 

 

C. Future Research 

• Extending to production-scale data 

• Adaptive attack research 

• Scalable influence computation for transformers 
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• Multi-model poisoning in federated learning 

• Forensic investigation tools 

 

D. Final Remarks 

Organizations must implement systematic defensive measures against the threat posed by data poisoning through adoption 

of the recommended framework, which includes data provenance tracking, pre-training anomaly detection, post-training    

influence     analysis,     and     production monitoring/maintenance. By doing so, these organizations  will greatly minimize 

their exposure to the risks associated with this issue, while concurrently optimizing their operational capabilities. 
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