Non-volatile Memory Effect in Iron Nanoparticles Dispersed Ferroelectric Liquid Crystal
Abstract
The research on new devices dedicated to the information storage represents a field in which the investments and the efforts of both industry and applied sciences are continuously growing in the last decades. This is due to the fact that the development of modern society is strictly connected with the need to increase the amount of information circulating at the global level. All this, increases the demand for increasingly efficient memory systems, both in terms of execution speed and energy consumption. To meet this demand, some frontier research is proposing various alternative solutions to the traditional silicon-based technology. The study proposed in this article is part of the trend of devices based on nanocomposed materials. In particular, a pronounced memory effect has been observed in a commercial ferroelectric liquid crystal doped with iron nanoparticles using a dielectric spectroscopy technique. The experimental data would lead to the hypothesis that this effect is due to a sort of switch between an initial phase, strongly distorted because the presence of the iron nanoparticles, to a restored smectic-C phase which take place by the application of a bias voltage.
Downloads
References
Tom Coughlin, Roger Hoyt, and Jim Handy, Digital Storage and Memory Technology (Part 1), IEEE discussing developments in digital storage technology, November 2017
Torsten Hegmann, Hao Qi, and Vanessa M. Marx. Journal of Inorganic and Organometallic Polymers and Materials, Vol. 17, No. 3, September 2007
Chigrinov, V.G.; Liquid Crystal Devices: Physics and Applications; Artech House: Boston, 1999.
Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Jones, A.C.; Pelcovits, R.A. J. Appl. Phys., 2005, 98, 123102. DOI: 10.1063/1.2146075
Lagerwall, S.T.; Ferroelectrics and Antiferroelectric Liquid Crystals; Willy-VCH, New York, 1999.
Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P.; J. Phys. Lett. 1975, 36, 69. DOI:10.1051/jphyslet:0197500360306900
Joshi, T.; Kumar, A.; Prakash, J.; Biradar, A.M.; Appl. Phys. Lett., 2010, 96, 253109. DOI: 10.1063/1.3455325
Chen, Q.; Lin, M. R.; Lee, J. E..; Zhang, Q. M.; Yin, S.; Appl. Phys. Lett., 2006, 89,141121. DOI: 10.1063/1.2360183
Zhang, T.; Zhong, C.; Xu, J.; Jpn J. Appl. Phys., 2009,48, 055002.DOI: 10.1143/JJAP.48.055002
S. E. Braslavsky, Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007
Prakash, J.; Choudhary, A.; Kumar, A.; Mehta, D. S.; Biradar A. M., Appl. Phys. Lett. 2008; 93: 112904.
Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Soft Matter. 2014; 10: 3842.
Marino, L.; Koduru, H. K.; Marino, S.; Facal, P. M.; Wang, D; Dabrowski, R.; Scaramuzza, N. Nanosci Technol. 2017; 4(1): 1-10.
Goel, P.; Arora, M.; Biradar, A. M. Journal of Applied Physics 2014; 115, 124905.
Pradeep Kumar, Avinash Kishore, Aloka Sinha, Adv. Mater. Lett. 2016, 7(2), 104-110.
Y. Garbovskiy and I. Glushchenko. Crystals, vol. 5, no. 4, pp. 501–533, 2015
Kumar, P.; Kishore, A.; Sinha, A.; Adv. Mater. Lett. 2016, 7(2), 104-110.
Kumar, M.; Kumar T.; Avasthi, D. K. Scripta Materialia, 2015, 105,46. DOI: 10.1016/j.scriptamat.2015.04.030
Enachi, M.; Lupan, O.; Braniste, T.; Sarua, A.; Chow,L.; Mishra, Y.K.; Gedamu, D.; Adelung, R.; Tiginyanu I. Phys. status solidi. RRL, 2015, 1. DOI: 10.1002/pssr.201409562
Chen, P.S.; Huang, C.C.; Liu, Y.W.; Chao, C.Y. Mol. Cryst. Liquid Cryst., 2009, 507, 202. DOI: 10.1080/15421400903051374
Chou, T.R.; Hsieh, J.; Chen, W.T.; Chao, C.Y. Jpn. J. Appl. Phys., 2014, 53, 071701. DOI: 10.7567/JJAP.53.071701
Chandran, A.; Prakash, J.; Ganguly, P.; Biradar.; A.M. RSC. Adv., 2013, 3, 17166. DOI: 10.1039/C3RA41964A
Tang, C.Y.; Huang, S.M.; Lee, W. J. Phys. D.; 2011, 44, 355102. DOI: 10.1088/0022-3727/44/35/355102
Urbanski, M.; Lagerwall J. P. F. J. Mater. Chem. C, 2016, 4, 3485
Tomylko, S.; Yaroshchuk, O. ; Kovalchuk, O.; Maschke U. ; Yamaguchi, R. Ukr. J. Phys., 2012, 57, 239–243.
Ha, Y. S.; Kim, H. J.; Park, H.G.; Seo, D. S. Opt. Express, 2012, 20, 6448–6455.
Garcìa-Garcìa, A.; Vergaz, R.; Algorri, J. F.; Geday, M. A. ; Oto´n, J. M. J. Phys. D: Appl. Phys., 2015, 48, 375302.
MacGregor, A. R. A. J. Mod. Optics, 1990, 37, 919-935.
Stewart, I. W.; The Static and Dynamic Continuum Theory of Liquid Crystals; Taylor & Francis, London and New York, 2004.
F. Gouda, K. Skarp, and S. T. Lagerwall. Ferroelectrics, 1991, Vol. 113, pp. 165-206
B. Rozic, M. Jagodic, S. Gyergyek, M. Drofenik, S. Kralj, G. Cordoyiannis, and Z. Kutnjak. Mol. Cryst. Liq. Cryst, Vol. 545: pp. 99, 1323–104, 1328, 2011.
Dharmendra Pratap Singh, Tripti Vimal, Yatin J. Mange, Mahesh C. Varia, Thomas Nann, K. K. Pandey, Rajiv Manohar, and Redouane Douali. Journal of Applied Physics, 123, 034101, 2018.
Copyright (c) 2019 IJRDO - Journal of Applied Science (ISSN: 2455-6653)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Author(s) and co-author(s) jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties, and that the Article has not been published elsewhere. Author(s) agree to the terms that the IJRDO Journal will have the full right to remove the published article on any misconduct found in the published article.