Non-volatile Memory Effect in Iron Nanoparticles Dispersed Ferroelectric Liquid Crystal

  • Lucia Marino Physics Department, University of Calabria (UNICAL) Address: Via P. Bucci, Cubo 31C, 87036 Arcavacata di Rende, Cosenza, Italy.
  • Nicola Scaramuzza Physics Department, University of Calabria (UNICAL) Address: Via P. Bucci, Cubo 31C, 87036 Arcavacata di Rende, Cosenza, Italy.
  • Salvatore Marino Università della Calabria
Keywords: non-volatile memory effect, iron nanoparticles, ferroelectric liquid crystals, dielectric spectroscopy, nanocomposed materials

Abstract

The research on new devices dedicated to the information storage represents a field in which the investments and the efforts of both industry and applied sciences are continuously growing in the last decades. This is due to the fact that the development of modern society is strictly connected with the need to increase the amount of information circulating at the global level. All this, increases the demand for increasingly efficient memory systems, both in terms of execution speed and energy consumption. To meet this demand, some frontier research is proposing various alternative solutions to the traditional silicon-based technology. The study proposed in this article is part of the trend of devices based on nanocomposed materials. In particular, a pronounced memory effect has been observed in a commercial ferroelectric liquid crystal doped with iron nanoparticles using a dielectric spectroscopy technique. The experimental data would lead to the hypothesis that this effect is due to a sort of switch between an initial phase, strongly distorted because the presence of the iron nanoparticles, to a restored smectic-C phase which take place by the application of a bias voltage.

Downloads

Download data is not yet available.

References

Tom Coughlin, Roger Hoyt, and Jim Handy, Digital Storage and Memory Technology (Part 1), IEEE discussing developments in digital storage technology, November 2017

Torsten Hegmann, Hao Qi, and Vanessa M. Marx. Journal of Inorganic and Organometallic Polymers and Materials, Vol. 17, No. 3, September 2007

Chigrinov, V.G.; Liquid Crystal Devices: Physics and Applications; Artech House: Boston, 1999.

Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Jones, A.C.; Pelcovits, R.A. J. Appl. Phys., 2005, 98, 123102. DOI: 10.1063/1.2146075

Lagerwall, S.T.; Ferroelectrics and Antiferroelectric Liquid Crystals; Willy-VCH, New York, 1999.

Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P.; J. Phys. Lett. 1975, 36, 69. DOI:10.1051/jphyslet:0197500360306900

Joshi, T.; Kumar, A.; Prakash, J.; Biradar, A.M.; Appl. Phys. Lett., 2010, 96, 253109. DOI: 10.1063/1.3455325

Chen, Q.; Lin, M. R.; Lee, J. E..; Zhang, Q. M.; Yin, S.; Appl. Phys. Lett., 2006, 89,141121. DOI: 10.1063/1.2360183

Zhang, T.; Zhong, C.; Xu, J.; Jpn J. Appl. Phys., 2009,48, 055002.DOI: 10.1143/JJAP.48.055002

S. E. Braslavsky, Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007

Prakash, J.; Choudhary, A.; Kumar, A.; Mehta, D. S.; Biradar A. M., Appl. Phys. Lett. 2008; 93: 112904.

Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Soft Matter. 2014; 10: 3842.

Marino, L.; Koduru, H. K.; Marino, S.; Facal, P. M.; Wang, D; Dabrowski, R.; Scaramuzza, N. Nanosci Technol. 2017; 4(1): 1-10.

Goel, P.; Arora, M.; Biradar, A. M. Journal of Applied Physics 2014; 115, 124905.

Pradeep Kumar, Avinash Kishore, Aloka Sinha, Adv. Mater. Lett. 2016, 7(2), 104-110.

Y. Garbovskiy and I. Glushchenko. Crystals, vol. 5, no. 4, pp. 501–533, 2015

Kumar, P.; Kishore, A.; Sinha, A.; Adv. Mater. Lett. 2016, 7(2), 104-110.

Kumar, M.; Kumar T.; Avasthi, D. K. Scripta Materialia, 2015, 105,46. DOI: 10.1016/j.scriptamat.2015.04.030

Enachi, M.; Lupan, O.; Braniste, T.; Sarua, A.; Chow,L.; Mishra, Y.K.; Gedamu, D.; Adelung, R.; Tiginyanu I. Phys. status solidi. RRL, 2015, 1. DOI: 10.1002/pssr.201409562

Chen, P.S.; Huang, C.C.; Liu, Y.W.; Chao, C.Y. Mol. Cryst. Liquid Cryst., 2009, 507, 202. DOI: 10.1080/15421400903051374

Chou, T.R.; Hsieh, J.; Chen, W.T.; Chao, C.Y. Jpn. J. Appl. Phys., 2014, 53, 071701. DOI: 10.7567/JJAP.53.071701

Chandran, A.; Prakash, J.; Ganguly, P.; Biradar.; A.M. RSC. Adv., 2013, 3, 17166. DOI: 10.1039/C3RA41964A

Tang, C.Y.; Huang, S.M.; Lee, W. J. Phys. D.; 2011, 44, 355102. DOI: 10.1088/0022-3727/44/35/355102

Urbanski, M.; Lagerwall J. P. F. J. Mater. Chem. C, 2016, 4, 3485

Tomylko, S.; Yaroshchuk, O. ; Kovalchuk, O.; Maschke U. ; Yamaguchi, R. Ukr. J. Phys., 2012, 57, 239–243.

Ha, Y. S.; Kim, H. J.; Park, H.G.; Seo, D. S. Opt. Express, 2012, 20, 6448–6455.

Garcìa-Garcìa, A.; Vergaz, R.; Algorri, J. F.; Geday, M. A. ; Oto´n, J. M. J. Phys. D: Appl. Phys., 2015, 48, 375302.

MacGregor, A. R. A. J. Mod. Optics, 1990, 37, 919-935.

Stewart, I. W.; The Static and Dynamic Continuum Theory of Liquid Crystals; Taylor & Francis, London and New York, 2004.

F. Gouda, K. Skarp, and S. T. Lagerwall. Ferroelectrics, 1991, Vol. 113, pp. 165-206

B. Rozic, M. Jagodic, S. Gyergyek, M. Drofenik, S. Kralj, G. Cordoyiannis, and Z. Kutnjak. Mol. Cryst. Liq. Cryst, Vol. 545: pp. 99, 1323–104, 1328, 2011.

Dharmendra Pratap Singh, Tripti Vimal, Yatin J. Mange, Mahesh C. Varia, Thomas Nann, K. K. Pandey, Rajiv Manohar, and Redouane Douali. Journal of Applied Physics, 123, 034101, 2018.

Published
2019-10-09
How to Cite
Marino, L., Scaramuzza, N., & Marino, S. (2019). Non-volatile Memory Effect in Iron Nanoparticles Dispersed Ferroelectric Liquid Crystal. IJRDO-Journal of Applied Science, 5(9), 11-24. https://doi.org/10.53555/as.v5i9.3170